The Circulatory system - Blood

Al-Farabi Kazakh National University Higher School of Medicine

LEARNING OUTCOMES

As a result of the lesson you will be able to:

- Describe the functions and major components of the circulatory system;
- Describe the components and physical properties of blood and blood plasma; and discuss its importance in the body.
- Explain the significance of blood viscosity and osmolarity;
- Describe the structure and explain the function of red blood cells; characterize the structure and function of hemoglobin;
- Define some clinical measurements of RBC and hemoglobin quantities and give some typical values for each;
- Discuss the life cycle of erythrocytes;
- Explain the molecular basis of blood types and their clinical significance.
- Discuss the general function of leukocytes and the specific functions of each individual type
- Characterize the appearance and relative abundance of each type of leukocyte;
- Describe the life cycle of leukocytes.
- Describe the structure and functions of blood platelets;
- Describe platelet production
- Describe blood clotting and other mechanisms for controlling bleeding.

Circulatory System

functions of circulatory system

- transport
 - O₂, CO₂, nutrients, wastes, hormones, and stem cells
- protection
 - inflammation, limit spread of infection, destroy microorganisms and cancer cells, neutralize toxins, and initiates clotting
- regulation
 - fluid balance, stabilizes pH of ECF, and temperature control

Components and General Properties of Blood

- adults have 4-6 L of blood
- a **liquid connective tissue** consisting of cells and extracellular matrix
 - plasma matrix of blood
 - a clear, light yellow fluid
 - formed elements blood cells and cell fragments
 - red blood cells, white blood cells, and platelets

Components and General Properties of Blood

- seven kinds of formed elements
 - erythrocytes red blood cells (RBCs)
 - platelets
 - cell fragments from special cell in bone marrow
 - leukocytes white blood cells (WBCs)
 - five leukocyte types divided into two catégories:
 - granulocytes (with granules)
 - neutrophils
 - eosinophils
 - basophils
 - agranulocytes (without granules)
 - lymphocytes
 - monocytes

Plasma and Plasma Proteins

- **plasma** liquid portion of blood
 - serum remaining fluid when blood clots and the solids are removed
 - identical to plasma except for the absence of fibrinogen
- 3 major categories of plasma proteins
 - albumins smallest and most abundant
 - contributes to viscosity and osmolarity, influences blood pressure, flow and fluid balance
 - globulins (antibodies)
 - provide immune system functions
 - alpha, beta and gamma globulins
 - fibrinogen
 - precursor of fibrin threads that help form blood clots
- plasma proteins formed by liver
 - except globulins (produced by plasma cells)

Nonprotein Components of Plasma

nitrogenous compounds

- free amino acids
 - from dietary protein or tissue breakdown
- nitrogenous wastes (urea)
 - toxic end products of catabolism
 - normally removed by the kidneys

nutrients

- glucose, vitamins, fats, cholesterol, phospholipids, and minerals
- dissolved O₂, CO₂, and nitrogen
- electrolytes

Na⁺ makes up 90% of plasma cations

Properties of Blood

- **viscosity** resistance of a fluid to flow, resulting from the cohesion of its particles
 - whole blood 4.5 5.5 times as viscous as water
 - plasma is 2.0 times as viscous as water
 - important in circulatory function
- osmolarity of blood the total molarity of those dissolved particles that cannot pass through the blood vessel wall
 - if too high, blood absorbs too much water, increasing the blood pressure
 - if too low, too much water stays in tissue, blood pressure drops and edema occurs
 - optimum osmolarity is achieved by bodies regulation of sodium ions, proteins, and red blood cells.

Hemopoiesis

- adult production of 400 billion platelets, 200 billion RBCs and 10 billion WBCs every day
- hemopoiesis the production of blood, especially its formed elements
- hemopoietic tissues produce blood cells
 - yolk sac produces stem cells for first blood cells
 - colonize fetal bone marrow, liver, spleen and thymus
 - liver stops producing blood cells at birth
 - spleen remains involved with lymphocyte production
 - red bone marrow produces all seven formed elements
 - pluripotent stem cells (PPSC)
 - formerly called hemocytoblasts or hemopoietic stem cells
 - colony forming units specialized stem cells only producing one class of formed element of blood
 - **myeloid hemopoiesis** blood formation in the bone marrow
 - **lymphoid hemopoiesis** blood formation in the lymphatic organs

Erythrocytes

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- two principal functions:
 - carry oxygen from lungs to cell tissues
 - pick up carbon dioxide from tissues and bring to lungs
- insufficient RBCs may kill in few minutes due to lack of oxygen to tissues

Erythrocytes (RBCs)

- disc-shaped cell with thick rim
 - 7.5 μM diameter and 2.0 μm thick at rim
 - lose nearly all organelles during development
 - lack mitochondria
 - anaerobic fermentation to produce ATP
 - lack of nucleus and DNA
 - no protein synthesis or mitosis
 - blood type determined by surface glycoprotein and glycolipids
 - cytoskeletal proteins (spectrin and actin) give membrane durability and resilience
 - stretch and bend as squeeze through (a) small capillaries

RBC Form and Function

- gas transport major function
 - increased surface area/volume ratio
 - due to loss of organelles during maturation
 - increases diffusion rate of substances
 - 33% of cytoplasm is hemoglobin (Hb)
 - 280 million hemoglobin molecules on one RBC
 - O₂ delivery to tissue and CO₂ transport to lungs
 - carbonic anhydrase (CAH) in cytoplasm
 - produces carbonic acid from CO₂ and water
 - important role in gas transport and pH balance

Hemoglobin (Hb) Structure

(b)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- each Hb molecule consists of:
 - four protein chains globins
 - four heme groups
- heme groups
 - nonprotein moiety that binds O_2 to ferrous ion (Fe²⁺) at its center
- globins four protein chains
 - two alpha and two beta chains
 - -5% CO₂ in blood is bound to globin moiety
- adult vs. fetal hemoglobin

Erythrocytes and Hemoglobin

- RBC count and hemoglobin concentration indicate amount of O₂ blood can carry
 - hematocrit (packed cell volume) percentage of whole blood volume composed of red blood cells
 - men 42- 52% cells; women 37- 48% cells
 - hemoglobin concentration of whole blood
 - men 13-18g/dL; women 12-16g/dL
 - RBC count
 - men 4.6-6.2 million/ μ L; women 4-2-5.4 million/ μ L
- values are lower in women
 - androgens stimulate RBC production
 - women have periodic menstrual losses
 - hematocrit is inversely proportional to percentage of body fat

Erythrocyte Production (Erythropoiesis)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 18.6

- 2.5 million RBCs are produced per second
- average lifespan of about 120 days
- development takes 3-5 days
 - reduction in cell size, increase in cell number, synthesis of hemoglobin and loss of nucleus
- first committed cell **erythrocyte colony forming unit** has receptors for erythropoietin (EPO) from kidneys •
- erythroblasts (normoblast) multiply and synthesize hemoglobin
- nucleus discarded to form a reticulocyte ۲
 - named for fine network of endoplasmic reticulum
 0.5 to 1.5% of circulating RBCs are reticulocytes

Iron Metabolism

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 18.7

Nutritional Needs for Erythropoiesis

- iron key nutritional requirement
 - lost daily through urine, feces, and bleeding
 - men 0.9 mg/day and women 1.7 mg/day
 - low absorption rate of iron requires consumption of 5-20 mg/day
 - dietary iron: ferric (Fe³⁺) and ferrous (Fe²⁺)
 - stomach acid converts Fe³⁺ to absorbable Fe²⁺
 - gastroferritin binds Fe²⁺ and transports it to small intestine
 - absorbed into blood and binds to transferrin for transport to bone marrow, liver, and other tissues
 - bone marrow for **hemoglobin**, muscle for **myoglobin**, and all cells use for **cytochromes** in mitochondria
 - liver apoferritin binds to create ferritin for storage

Nutritional Needs for Erythropoiesis

• Vitamin B_{12} and folic acid

rapid cell division and DNA synthesis that occurs in erythropoiesis

- Vitamin C and copper
 - cofactors for enzymes synthesizing hemoglobin
 - copper is transported in the blood by an alpha globulin called ceruloplasmin

Erythrocyte Homeostasis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- negative feedback control
 - drop in RBC count causes kidney
 hypoxemia
 - kidney production of erythropoietin stimulates bone marrow
 - RBC count increases in 3 4 days
- stimuli for increasing erythropoiesis
 - low levels O₂ (hypoxemia)
 - high altitude
 - increase in exercise
 - loss of lung tissue in emphysema

Figure 18.8

Erythrocytes Death and Disposal

- RBCs lyse in narrow channels in **spleen**
- macrophages in spleen
 - digest membrane bits
 - separate heme from globin
 - globins hydrolyzed into amino acids
 - iron removed from heme
 - heme pigment converted to biliverdin (green)
 - biliverdin converted to bilirubin (yellow)
 - released into blood plasma (kidneys yellow urine)
 - liver removes bilirubin and secretes into bile
 - concentrated in gall bladder: released into small intestine; bacteria create **urobilinogen** (brown feces)

Erythrocytes Recycle/Disposal

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Erythrocyte Disorders

- polycythemia an excess of RBCs
 primary polycythemia (polycythemia vera)
 - cancer of erythropoietic cell line in red bone marrow – RBC count as high as 11 million/μL; hematocrit 80%
 - secondary polycythemia
 - from dehydration, emphysema, high altitude, or physical conditioning

– RBC count up to 8 million/ μ L

dangers of polycythemia

- increased blood volume, pressure, viscosity

• can lead to embolism, stroke or heart failure

Anemia

• **causes** of anemia fall into three categories:

inadequate erythropoiesis or hemoglobin synthesis

- kidney failure and insufficient erythropoietin
- iron-deficiency anemia
- inadequate vitamin B₁₂ from poor nutrition or lack of intrinsic factor (pernicious anemia)
- hypoplastic anemia slowing of erythropoiesis
- aplastic anemia complete cessation of erythropoiesis
- hemorrhagic anemias from bleeding
- hemolytic anemias from RBC destruction

Anemia

- anemia has three potential **consequences**:
 - tissue hypoxia and necrosis
 - patient is lethargic
 - shortness of breath upon exertion
 - life threatening necrosis of brain, heart, or kidney
 - blood osmolarity is reduced producing tissue edema
 - blood viscosity is low
 - heart races and pressure drops
 - cardiac failure may ensue

Sickle-Cell Disease

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© Meckes/Ottawa/Photo Researchers, Inc.

Figure 18.10

- hereditary hemoglobin defects that occur mostly among people of African descent
- caused by a recessive allele that modifies the structure of the hemoglobin molecule (HbS)
 - differs only on the sixth amino acid of the beta chain
 - HbS does not bind oxygen well
 - RBCs become rigid, sticky, pointed at ends
 - clump together and block small blood vessels causing intense pain
 - can lead to kidney or heart failure, stroke, rheumatism or paralysis

Blood Types

- blood types and transfusion compatibility are a matter of interactions between plasma proteins and erythrocytes
- Karl Landsteiner discovered blood types
 A, B and O in 1900
 won Nobel Prize
- blood types are based on interactions between antigens and antibodies

Blood Antigens and Antibodies

antigens

- complex molecules on surface of cell membrane that are unique to the individual
 - used to distinguish self from foreign
 - foreign antigens generate an immune response
 - agglutinogens antigens on the surface of the RBC that is the basis for blood typing

antibodies

- proteins (gamma globulins) secreted by plasma cells
 - part of immune response to foreign matter
 - bind to antigens and mark them for destruction
 - forms antigen-antibody complexes
 - agglutinins antibodies in the plasma that bring about transfusion mismatch

agglutination

- antibody molecule binding to antigens
- causes clumping of red blood cells

Blood Types

- RBC antigens called agglutinogens
 - called antigen A and B
 - determined by carbohydrate moieties found on RBC surface
- antibodies called agglutinins
 - found in plasma
 - anti-A and anti-B

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

ABO Group

- your ABO blood type is determined by presence or absence of antigens (agglutinogens) on RBCs
 - blood type A person has A antigens
 - blood type B person has B antigens
 - blood type AB has both A and B antigens
 - blood type O person has neither antigen
 - most common type O
 - rarest type AB

ABO Blood Typing

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 18.14

Plasma Antibodies

- antibodies (agglutinins); anti-A and anti-B
- appear 2-8 months after birth; at maximum concentration at 10 yr.
 - antibody-A and/or antibody-B (both or none) are found in plasma
 - you do not form antibodies against your antigens

agglutination

- each antibody can attach to several foreign antigens on several different RBCs at the same time
- responsible for mismatched **transfusion reaction**
 - agglutinated RBCs block small blood vessels, hemolyze, and release their hemoglobin over the next few hours or days
 - Hb blocks kidney tubules and causes acute renal failure

Agglutination of Erythrocytes

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Transfusion Reaction

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 18.15

Universal Donors and Recipients

- universal donor
 - Type O most common blood type
 - lacks RBC antigens
 - donor's plasma may have both antibodies against recipient's RBCs (anti-A and anti-B)
 - may give packed cells (minimal plasma)
- universal recipient
 - **Type AB** rarest blood type
 - lacks plasma antibodies; no anti- A or B

Rh Group

- Rh (C,D,E) agglutinogens discovered in rhesus monkey in 1940
 - Rh D is the most reactive and a patient is considered blood type Rh⁺ if they have D antigen (agglutinogens) on RBCs
 Rh frequencies vary among ethnic groups
- Anti-D agglutinins not normally present
 form in Rh⁻ individuals exposed to Rh⁺ blood
 - Rh⁻ woman with an Rh⁺ fetus or transfusion of Rh⁺ blood
 - no problems with first transfusion or pregnancy

Hemolytic Disease of Newborn

- occurs if Rh- mother has formed antibodies and is pregnant with second Rh+ child
 - Anti-D antibodies can cross placenta
- prevention
 - RhoGAM given to pregnant Rh⁻ women
 - binds fetal agglutinogens in her blood so she will not form Anti-D antibodies

Hemolytic Disease of Newborn

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Rh antibodies attack fetal blood causing severe anemia and toxic brain syndrome

Leukocytes (WBCs)

- least abundant formed element
 5,000 to 10,000 WBCs/µL
- protect against infectious microorganisms and other pathogens
- conspicuous nucleus
- spend only a few hours in the blood stream before migrating to connective tissue
- retain their organelles for protein synthesis
- granules
 - all WBCs have lysosomes called nonspecific (azurophilic) granules – inconspicuous so cytoplasm looks clear
 - granulocytes have specific granules that contain enzymes and other chemicals employed in defense against pathogens

Types of Leukocytes

- granulocytes
 - neutrophils (60-70%)-polymorphonuclear leukocytes
 - barely-visible granules in cytoplasm; 3 to 5 lobed nucleus
 - eosinophils (2-4%)
 - large rosy-orange granules; bilobed nucleus
 - basophils (<1%)</p>
 - large, abundant, violet granules (obscure a large S-shaped nucleus)

agranulocytes

- lymphocytes (25-33%)
 - variable amounts of bluish cytoplasm (scanty to abundant); ovoid/round, uniform dark violet nucleus
- monocytes (3-8%)
 - largest WBC; ovoid, kidney-, or horseshoe- shaped nucleus

Granulocytes

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

all: © Ed Reschke

10 µm

Figure TA 18.1

Figure TA 18.2

Figure TA 18.3

Agranulocytes

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Lymphocyte

10 µm

both: Michael Ross/Photo Researchers, Inc.

Figure TA 18.4

Figure TA 18.5

Granulocyte Functions

- **neutrophils** increased numbers in bacterial infections
 - phagocytosis of bacteria
 - release antimicrobial chemicals
- **eosinophils** increased numbers in parasitic infections, collagen diseases, allergies, diseases of spleen and CNS
 - phagocytosis of antigen-antibody complexes, allergens, and inflammatory chemicals
 - release enzymes to destroy large parasites
- basophils increased numbers in chicken pox, sinusitis, diabetes)
 - secreté histamine (vasodilator) speeds flow of blood to an injured area
 - secrete heparin (anticoagulant) promotes the mobility of other WBCs in the area

Agranulocyte Functions

- Iymphocytes increased numbers in diverse infections and immune responses
 - destroy cells (cancer, foreign, and virally infected cells)
 - "present" antigens to activate other immune cells
 - coordinate actions of other immune cells
 - secrete antibodies and provide immune memory
- monocytes increased numbers in viral infections and inflammation
 - leave bloodstream and transform into macrophages
 - phagocytize pathogens and debris
 - "present" antigens to activate other immune cells antigen presenting cells (APCs)

Complete Blood Count

- Hematocrit
- Hemoglobin concentration
- Total count for RBCs, reticulocytes, WBCs, and platelets
- Differential WBC count
- RBC size and hemoglobin concentration per RBC

Leukocyte Life Cycle

- **leukopoiesis** production of white blood cells pluripotent stem cells (PPSCs)
 - - myeloblasts form neutrophils, éosinophils, basophils
 - monoblasts form monocytes
 - lymphoblasts give rise to all forms of lymphocytes
 - T lymphocytes complete development in thymus
- red bone marrow stores and releases granulocytes and monocytes
- circulating WBCs do not stay in bloodstream

 granulocytes leave in 8 hours and live 5 days longer

 - monocytes leave in 20 hours, transform into macrophages and live for several years
 - lymphocytes provide long-term immunity (decades) being continuously recycled from blood to tissue fluid to lymph and back to the blood

Leukopoiesis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 18.18

Leukocyte Disorders

- leukopenia low WBC count below 5000/μL
 - causes: radiation, poisons, infectious disease
 - effects: elevated risk of infection
- leukocytosis high WBC count above 10,000/μL
 - causes: infection, allergy and disease
 - differential WBC count identifies what percentage of the total WBC count consist of each type of leukocyte
- leukemia cancer of hemopoietic tissue that usually produces an extraordinary high number of circulating leukocytes and their precursors
 - myeloid leukemia uncontrolled granulocyte production
 - Iymphoid leukemia uncontrolled lymphocyte or monocyte production
 - acute leukemia appears suddenly, progresses rapidly, death within months
 - chronic leukemia –undetected for months, survival time three years
 - effects normal cell percentages disrupted; impaired clotting; opportunistic infections

Normal and Leukemic Blood

(a)

Figure 18.19 a-b

Hemostasis

- hemostasis the cessation of bleeding
 - stopping potentially fatal leaks
 - hemorrhage excessive bleeding

three hemostatic mechanisms

- vascular spasm
- platelet plug formation
 blood clotting (coagulation)
- **platelets** play an important role in all three

Platelets

- **platelets** small fragments of **megakaryocyte** cells 2-4 μm diameter; contain "granules" \bullet

 - complex internal structure and open canalicular system
 - amoeboid movement and phagocytosis
- normal platelet count 130,000 to 400,000 platelets/ μ L ۲
- functions ullet
 - secrete vasoconstrictors that help reduce blood loss
 - stick together to form **platelet plugs** to seal small breaks
 - secrete **procoagulants** or clotting factors promote clotting
 - initiate formation of clot-dissolving enzyme
 - chemically attract neutrophils and monocytes to sites of inflammation
 - phagocytize and destroy bacteria
 - secrete growth factors that stimulate mitosis to repair blood vessels

Platelets

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 18.20 a-b

Platelet Production -Thrombopoiesis

- stem cells (that develop receptors for thrombopoietin) become megakaryoblasts
- megakaryoblasts
 - repeatedly replicate DNA without dividing
 - forms gigantic cell called megakaryocyte with a multilobed nucleus
 - 100 μm in diameter, remains in bone marrow
- megakaryocytes live in bone marrow adjacent to blood sinusoids
 - long tendrils of cytoplasm (proplatelets) protrude into the blood sinusoids – blood flow splits off fragments called platelets
 - circulate freely for 10 days
 - 40% are stored in spleen

Hemostasis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 18.21 a-c

all 3 pathways involve platelets

Hemostasis - Vascular Spasm

- vascular spasm prompt constriction of a broken vessel
 - most immediate protection against blood loss
- causes:
 - pain receptors
 - some directly innervate blood vessels to constrict
 - smooth muscle injury
 - platelets release serotonin (vasoconstrictor)
- effects:
 - prompt constriction of a broken vessel
 - pain receptors short duration (minutes)
 - smooth muscle injury longer duration
 - provides time for other two clotting pathways

Hemostasis -Platelet Plug Formation

- endothelium smooth, coated with prostacyclin a platelet repellant
- platelet plug formation
 - broken vessel exposes collagen
 - platelet pseudopods stick to damaged vessel and other platelets - pseudopods contract and draw walls of vessel together forming a platelet plug
 - platelets **degranulate** releasing a variety of substances
 - serotonin is a vasoconstrictor
 - ADP attracts and degranulates more platelets
 - thromboxane A₂, an eicosanoid, promotes platelet aggregation, degranulation and vasoconstriction
 - positive feedback cycle is active until break in small vessel is sealed

Hemostasis - Coagulation

- coagulation (clotting) last and most effective defense against bleeding
 - conversion of plasma protein fibrinogen into insoluble fibrin threads to form framework of clot
- procoagulants (clotting factors), usually produced by the liver, are present in plasma

 activate one factor and it will activate the next to form a reaction cascade
- extrinsic pathway
 - factors released by damaged tissues begin cascade
- intrinsic pathway
 - factors found in blood begin cascade (platelet degranulation)

SEM of Blood Clot

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© P. Motta/SPL/Photo Researchers, Inc.

Figure 18.22

Coagulation Pathways

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

extrinsic pathway

- initiated by release of tissue thromboplastin (factor III) from damaged tissue
- cascade to factor VII, V and X (fewer steps)

intrinsic pathway

- initiated by platelets releasing
 Hageman factor (factor XII)
- cascade to factor XI to IX to VIII to X

calcium required for either pathway

Enzyme Amplification in Clotting

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

rapid clotting - each activated cofactor activates many more molecules in next step of sequence

Completion of Coagulation

- activation of factor X

 leads to production of prothrombin activator
- prothrombin activator
 converts prothrombin to thrombin
- thrombin
 - converts fibrinogen into fibrin
- positive feedback thrombin speeds up formation of prothrombin activator

Fate of Blood Clots

- clot retraction occurs within 30 minutes
- platelet-derived growth factor secreted by platelets and endothelial cells
 - mitotic stimulant for fibroblasts and smooth muscle to multiply and repair damaged vessel
- **fibrinolysis** dissolution of a clot
 - factor XII speeds up formation of kallikrein enzyme
 - kallikrein converts plasminogen into plasmin, a fibrindissolving enzyme that breaks up the clot

Blood Clot Dissolution

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Prevention of Inappropriate Clotting

platelet repulsion

- platelets do not adhere to prostacyclin-coating
- thrombin dilution
 - by rapidly flowing blood
 - heart slowing in shock can result in clot formation
- natural anticoagulants
 - heparin (from basophils and mast cells) interferes with formation of prothrombin activator
 - antithrombin (from liver) deactivates thrombin before it can act on fibrinogen

Clotting Disorders - Hemophilia

- deficiency of any clotting factor can shut down the coagulation cascade
- **hemophilia** family of hereditary diseases characterized by deficiencies of one factor or another
- sex-linked recessive (on X chromosome)
 - hemophilia A missing factor VIII (83% of cases)
 - hemophilia B missing factor IX (15% of cases)
 note: hemophilia C missing factor XI (autosomal)
- physical exertion causes bleeding and excruciating pain
 - transfusion of plasma or purified clotting factors
 - factor VIII produced by transgenic bacteria
- hematomas masses of clotted blood in the tissues

Coagulation Disorders

- thrombosis abnormal clotting in unbroken vessel
 - thrombus clot
 - most likely to occur in leg veins of inactive people
 - pulmonary embolism clot may break free, travel from veins to lungs
- embolus anything that can travel in the blood and block blood vessels
- infarction (tissue death) may occur if clot blocks blood supply to an organ (MI or stroke)
 - 650,000 Americans die annually of thromboembolism
 traveling blood clots

Clinical Management of Clotting

- goal prevent formation of clots or dissolve existing clots
- preventing clots
 - Vitamin K is required for formation of clotting factors
 - coumarin (Coumadin) is a vitamin K antagonist
 - **aspirin** suppresses thromboxane A_2
 - other anticoagulants discovered in animal research
 - medicinal leeches used since 1884 (hirudin)
 - snake venom from vipers (Arvin)

Clinical Management of Clotting

- **goal** prevent formation of clots or dissolve existing clots
- dissolving clots that have already formed
 streptokinase enzyme make by streptococci
 - bacteria
 - used to dissolve clots in coronary vessels
 - digests almost any protein
 - tissue plasminogen activator (TPA) works faster, is more specific, and now made by transgenic bacteria
 - hementin produced by giant Amazon leech